UNRAVELING THE IMPACT OF ELECTROMAGNETIC RADIATION ON HUMAN HEALTH: A COMPREHENSIVE REVIEW

ABRAHAM EHINOMHEN UBHENIN¹,* , JOSEPH ISABONA², FATIMAH ANURA¹, RAMATU IYA IDRIS¹

1. Department of Biochemistry, Faculty of Sciences, Federal University of Lafia, Nasarawa State, Nigeria
2. Department of Physics, Faculty of Sciences, Federal University of Lokoja, Kogi State, Nigeria

ABSTRACT
This comprehensive review examines the potential health effects of prolonged exposure to electromagnetic radiation, specifically from cell phones and base station transmitters. The study incorporates experimental and epidemiological research from reputable databases up to 2024 to assess the biological impacts of radiofrequency (RF) radiation on various organs and health outcomes. The mechanisms of electromagnetic radiation-induced damage include DNA damage, disruptions in the blood-brain barrier, oxidative stress, and effects on cognitive function and sleep. Potential risks, such as brain tumors, cancers, fertility issues, and neurological effects, are discussed. Safety measures by organizations like ICNIRP and WHO, public awareness campaigns, and natural remedies to reduce exposure are also addressed. Acknowledging limitations, the review calls for continued research and collaboration among stakeholders to consider new developments. Challenges related to base station transmitter exposure, including public concerns and regulatory compliance, are identified. In conclusion, the review emphasizes responsible decision-making and ongoing research to ensure the safe deployment of wireless technologies while protecting public well-being from electromagnetic radiation exposure. Implementation of safety guidelines is crucial for mitigating potential risks.

ARTICLE INFO
Received 12 December, 2023
Accepted 09 April, 2024
Published 29 April, 2024

KEYWORDS
Electromagnetic radiation,
Cell phones,
Base station transmitters,
Radiofrequency (RF) radiation,
DNA damage,
Safety guidelines

Copyright © 2024 the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION
In an era defined by rapid technological progress, concerns about the potential health implications of prolonged exposure to electromagnetic radiation (EMR) have intensified. This concern stems from the omnipresence of devices emitting EMR, prompting ongoing research efforts to deepen our understanding of its effects.

Of particular concern are the radiofrequency (RF) emissions from cell phones, operating within specific frequency bands such as the 900 MHz and 1800 MHz ranges. Additionally, microwaves, a subset of RF fields, contribute to the spectrum of EMR with frequencies ranging from 300 MHz to 300 GHz [1]. The health implications associated with EMR exposure encompass a wide range of issues, from brain tumors to cognitive function impairment. While definitive connections require further research, it is crucial to remain vigilant and adhere to recommended practices to minimize exposure [2,4].

*Corresponding author: ehibram@yahoo.co.uk; +234-813 3893 080
This comprehensive review aims to contribute significantly to our understanding of the potential health effects linked to prolonged EMR exposure. By consolidating existing research findings, identifying knowledge gaps, and providing updated insights, this review seeks to offer guidance for future research endeavors and inform policy development and public awareness initiatives.

Acknowledging previous reviews on similar topics, this work distinguishes itself through its updated scope, incorporation of recent research findings, and addressing contemporary challenges and concerns related to EMR exposure. Conducting literature searches up to March 2024 ensures the review reflects the most current understanding of the subject matter. The impact of EMR on human health extends beyond direct exposure from devices like cell phones to encompass broader environmental factors. Studies indicate potential implications for reproductive health, with environmental stressors like EMR contributing to reproductive disorders [5,6].

Furthermore, the use of EMR in medical diagnostics, particularly in Magnetic Resonance Imaging (MRI), underscores the complex interactions between electromagnetic fields and biological systems. Despite the utility of MRI as a diagnostic tool, questions persist regarding its safety, necessitating a deeper understanding of these interactions [7]. In addressing the environmental burden of disease, EMR emerges as a potential contributor to various health conditions, including mental disorders and allergic/asthmatic diseases [8]. The increasing prevalence of these conditions underscores the importance of considering EMR as an environmental pollutant warranting control measures.

While biophysical and biochemical mechanisms underlying the biological effects of EMF at low-intensity levels remain incompletely understood, recent progress indicates overlapping mechanisms for ELF and RF effects [9]. Individual responsiveness to EMF exposure underscores the need for tailored approaches to mitigate potential health risks.

Chronic diseases and illnesses associated with unspecific symptoms continue to rise, so it becomes imperative to consider new exposures like EMR as environmental stressors deserving attention [9]. This review aims to shed light on the multifaceted impact of EMR on human health, providing a comprehensive analysis to inform research, policy, and public awareness efforts.

MATERIALS AND METHODS
The study design of this comprehensive review aimed to investigate the potential health effects of prolonged exposure to electromagnetic radiation, with a specific focus on radiofrequency (RF) radiation from cell phones and base station transmitters. Both experimental and epidemiological studies were considered, providing a well-rounded assessment of the biological effects of EMF exposure on various organs and potential mechanisms that could lead to health implications.

A thorough literature search was conducted, encompassing reputable databases like PubMed, Google Scholar, Scopus, and Web of Science. The search used relevant keywords and phrases to identify studies related to EMF exposure and its potential health implications. The inclusion criteria focused on studies published in peer-reviewed journals up to 2024, ensuring that the most up-to-date and reliable information was gathered.

During the study selection process, the obtained data were screened for relevance to the study's objectives. Studies emphasizing the biological effects of EMF exposure, particularly RF radiation from cell phones and base station transmitters, were included. Various health-related outcomes such as brain tumors, cancers, fertility issues, sleep disturbances, and cognitive function were considered, incorporating animal studies, cell culture studies, and human studies to provide a comprehensive analysis.

Information from the selected studies was meticulously extracted and organized according to the health implications of EMF exposure. The review analyzed data on potential mechanisms, including thermal impact, oxidative stress, disruption of the blood-brain barrier, DNA damage, and cognitive effects. Additionally, the role of organizations like ICNIRP and WHO in risk management and safety measures, along with public awareness campaigns related to wireless communication devices and base station transmitters, were discussed.

The review also addressed natural remedies for mitigating EMF exposure risks, emphasizing general practices to reduce exposure and support overall health. Furthermore, the challenges associated with base station transmitter exposure, such as public concerns, misinformation, regulatory compliance, urban planning considerations, and equitable access to wireless technologies, were identified and discussed.

The review's limitations were acknowledged, highlighting that the findings were based on existing scientific literature up to 2024. As new research may have emerged since then, the review encourages continued research and collaboration among stakeholders to ensure the latest developments are considered. Additionally, the variations in methodologies, exposure levels, and study populations may influence the interpretation of results from different studies.

This review sheds light on the potential health implications of electromagnetic radiation exposure, particularly from cell phones and base station transmitters. The study emphasizes the importance of ongoing research, collaboration, adherence to safety guidelines, and transparent decision-making to ensure the safe deployment of wireless communication technologies while protecting public well-being.

RESULTS AND DISCUSSION
The Remedies for Mitigating EMF Exposure Risk
Remedies for mitigating EMF exposure risk encompass a range of strategies that individuals can adopt to reduce their exposure to electromagnetic fields emitted by various electronic devices. Firstly, increasing the distance between oneself and EMF-emitting devices like mobile phones and wireless routers is...
advised to minimize exposure levels. Keeping these devices at a distance when not in use can significantly reduce the intensity of EMF exposure [10].

Secondly, utilizing shielding materials made from natural substances such as metals, minerals, and certain plants can protect against EMFs. These materials are believed to possess shielding properties that help reduce the penetration of electromagnetic radiation. Incorporating such materials into the environment, whether at home or in the workplace, can contribute to lowering overall EMF exposure [11]. Additionally, practices like grounding or earthing, which involve connecting the body to the Earth’s natural electrical charge, are suggested as potential remedies for mitigating EMF exposure [11]. Walking barefoot on the ground or using grounding mats indoors are methods believed to help neutralize the effects of EMF exposure, although scientific evidence supporting their effectiveness remains limited. Alongside these natural remedies, maintaining a healthy lifestyle through a balanced diet, regular exercise, and stress management techniques can bolster the body’s natural defenses against environmental stressors, including EMFs. While natural remedies may offer some relief, individuals must prioritize proven strategies like limiting screen time, using hands-free options for mobile phones, and adhering to safety guidelines provided by regulatory authorities. Seeking advice from healthcare professionals or EMF specialists can further aid in personalized risk management.

Abnormalities associated with exposure to Electromagnetic Fields.

Numerous studies have investigated the biological effects of exposure to electromagnetic fields (EMF) on different organs in the body. Exposure to EMF has been associated with nervous system impairment, alterations in brain regions like the hippocampus, modification of ion channels in cells, slowing of visual reaction time in children, and immune system effects, among others [5,12]. Some studies have even reported a potential increase in leukemia and infertility in response to EMF exposure [13, 14]. Additionally, exposure to EMF has been linked to changes in insulin levels, EEG brain waves, and adverse effects on motor function, memory, and attention [15-18]. These findings underscore the importance of further research into the potential health risks associated with EMF exposure.

Effects of Electromagnetic Fields on DNA

Research has shown that exposure to electromagnetic fields, including radiofrequency radiation, may cause DNA damage and impact repair processes [19,20]. Microwaves were traditionally considered non-genotoxic, but recent studies have suggested that EM signals can interact directly with mobile charges within enzymes on the cell membrane [21]. This interaction may stimulate gene transcription and affect gene expression patterns, potentially leading to uncontrolled cell growth and brain tumor development [22]. Moreover, exposure to RF radiation may induce oxidative stress, producing reactive oxygen species that can damage cellular structures, including DNA, further contributing to tumor formation [23].

Electromagnetic-Induced Chromosome Aberrations and Micronuclei

Exposure to microwave radiation, even at low-intensity levels, has been associated with DNA strand breaks and an increased frequency of chromosome aberrations and micronuclei [24]. These effects raise concerns about potential health hazards, particularly for individuals chronically exposed to microwave radiation.

Electromagnetic-Induced Ornithine Decarboxylase (ODC) Synthesis and Gene Transcription

Studies have shown that microwave radiation exposure can impact cellular processes by affecting ornithine decarboxylase (ODC) production and gene transcription [25]. Alterations in proto-oncogene mRNA levels have been observed, indicating potential effects on cell signaling and gene expression, which could contribute to brain tumor development [26].

Electromagnetic-Induced Stress Response

Microwave radiation has been found to induce stress responses in cells, leading to protein damage and the activation of heat shock proteins [27]. This suggests that microwave radiation can trigger cellular stress responses, potentially impacting cell function and health. Prolonged exposure to RF radiation from devices like cell phones and base stations may cause localized heating in tissues, disrupting cellular processes and potentially causing DNA damage [28]. Additionally, RF radiation may trigger the production of reactive oxygen species (ROS) within cells, leading to oxidative stress and cellular damage [29,30].

Electromagnetic-Induced Disruption of the Blood-Brain Barrier (BBB)

Electromagnetic radiation, particularly in the form of radiofrequency (RF) fields, has been a subject of growing concern regarding its potential impact on human health. One area of particular interest is its possible effect on the blood-brain barrier (BBB), a crucial physiological structure that regulates the passage of molecules between the bloodstream and the brain tissue. Disruption of the BBB’s integrity could have significant implications for neuronal health and function [30]. The BBB is composed of endothelial cells connected by tight junctions, along with pericytes and extracellular matrix components. Its primary function is to maintain a stable environment for synaptic transmission and protect nervous tissue from potentially harmful substances. Normally, the BBB exhibits low permeability to hydrophilic and charged molecules, which is essential for proper neuronal function [30].

However, research suggests that certain environmental factors, such as excessive heat, can compromise the BBB’s integrity, leading to increased permeability. Studies have shown that an increase in brain temperature, even as little as 1°C or more, is associated with a dose-dependent uptake of neuronal albumin in various brain regions. This phenomenon indicates that...
alterations in brain temperature can affect the BBB's permeability to macromolecule. Excessive heat generated by RF radiation may contribute to increased permeability of the BBB to larger molecules. Studies have shown that elevated temperatures can disrupt the tight junctions between endothelial cells, compromising the BBB's ability to regulate molecular passage. Increased permeability of the BBB could allow harmful molecules to enter brain tissue, potentially contributing to various neurological conditions, including brain tumor development or progression [31].

Electromagnetic-Induced High Blood Pressure and Reproductive Tract Structural Alterations
Studies have reported changes in blood pressure and alterations in the structure of the reproductive tract in response to electromagnetic radiation exposure, raising concerns about potential effects on reproductive health. Electromagnetic radiation's potential impact on human health, specifically regarding high blood pressure and structural alterations in the reproductive tract, has been investigated through various studies [32]. Some research suggests a potential link between prolonged exposure to electromagnetic fields, including radiofrequency radiation from devices like cell phones, and alterations in blood pressure levels.

Electromagnetic-Induced Cancer
Numerous studies have demonstrated a link between RF radiation exposure and cancer incidence, particularly brain tumors [33]. The expanding use of mobile telephony technology worldwide raises concerns about the potential risks for millions of users.

Electromagnetic-Induced Brain Symptoms and Neurological Effects
Exposure to RF radiation from mobile phones has been associated with various brain symptoms, such as headaches, fatigue, and warmth sensations. At the cellular level, RF radiation has been shown to impact neurotransmitters, cognitive functions, and memory, potentially affecting behavior, cognitive tasks, and sleep patterns in animals and humans [34].

Cellular Effects and Health Implications of Electromagnetic Radiation
The extensive literature on the cellular effects of microwave radiation highlights significant alterations in cell function and health resulting from radiofrequency (RFR) exposure, even at non-thermal levels. These alterations encompass disruptions in calcium ion balance, immune responses, and potential links to cancer [35]. Moreover, electromagnetic radiation may lead to oxidative stress, affecting fertility, hormonal balance, and potential thermal impact on reproductive organs [36]. Additionally, exposure to blue light from electronic devices can disrupt circadian rhythms, sleep, and cognitive function. While some proposed mechanisms underline potential associations between electromagnetic radiation and health risks, further research is required to understand the underlying processes fully and establish comprehensive safety guidelines. In their comprehensive study, Aly & Crum [5] investigated the bioeffects and adverse health effects of low-intensity exposure to electromagnetic fields (EMFs). The research revealed significant physiological and neurological impacts on human health, including memory loss, slowed motor skills, disrupted sleep patterns, and compromised immune function [5]. School children exposed to low-intensity EMFs experienced altered cognitive functions, spatial disorientation, headaches, and changes in white blood cell activity. The study also found associations between EMF exposure and various health conditions, such as brain cancers, Alzheimer's disease, cardiovascular effects, DNA damage, lower sperm count, and hormonal changes [37]. The robust scientific language underscores the importance of further research to understand the underlying mechanisms and develop comprehensive safety guidelines to protect public health from the potential adverse effects of low-intensity EMF exposure [5].

Table 1 provides a detailed examination of the harmful impacts of electromagnetic radiation on human health. It categorizes these effects based on the mechanisms of damage, reported health consequences, corresponding frequencies in megahertz (MHz), and associated references. The mechanisms of damage include oxidative stress, DNA damage, thermal effects, and disruption of cellular communication pathways, among others. Reported effects range from neurological disorders and reproductive impairments to carcinogenesis, immune system dysfunction, and disturbances in physiological processes. The table provides a structured summary, encompassing a wide range of frequencies within the electromagnetic spectrum, such as extremely low frequency (ELF), radiofrequency (RF), and microwave radiation. Each entry is supported by scholarly references, offering readers access to further detailed information and research studies on the subject matter.

Overall, Table 1 serves as a comprehensive resource for understanding the complex relationship between electromagnetic radiation and its adverse effects on human physiology. It highlights the diverse mechanisms and frequencies associated with these deleterious effects, aiding in the comprehension of EMR's multifaceted influence on biological systems.

Table 2 provides a detailed exploration of the adverse effects of electromagnetic radiation (EMR) on human health, alongside their associated power density levels. Organized into three columns, the table first outlines various biological effects stemming from EMR exposure, encompassing phenomena such as cellular damage, gene expression alterations, neurotransmitter disruption, and immune system modulation. Each biological effect is correlated with specific power density levels, offering insights into the intensity of EMR exposure linked with observed health consequences. The table then proceeds to present the associated power density levels for each effect, quantifying the amount of electromagnetic energy absorbed per unit area by biological tissues—a crucial metric for assessing potential health risks posed by EMR across varying exposure levels. Finally, the references column...
Table 1: Deleterious Effects of Electromagnetic Radiation (EMR)

<table>
<thead>
<tr>
<th>Mechanism of Damage</th>
<th>Reported Effects</th>
<th>Frequencies (MHz)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects</td>
<td>Tissue heating, potential for tissue Thermal damage</td>
<td>900, 1800, 2200</td>
<td>[5, 38, 39]</td>
</tr>
<tr>
<td>Non-Thermal Effects</td>
<td>Biological effects on human tissues, including brain, cancer, and immune system</td>
<td>900, 1800, 2200</td>
<td>[40, 41]</td>
</tr>
<tr>
<td>DNA Damage</td>
<td>Increased risk of DNA damage, potentially leading to cancer</td>
<td>900, 1800</td>
<td>[42]</td>
</tr>
<tr>
<td>Blood-Brain Barrier (BBB)</td>
<td>Possible disruption of the BBB function</td>
<td>900, 1800, 2200</td>
<td>[43]</td>
</tr>
<tr>
<td>Sleep Disturbances</td>
<td>Sleep problems potentially induced by EMF radiation</td>
<td>900</td>
<td>[44]</td>
</tr>
<tr>
<td>Immune System Function</td>
<td>Potential effects on the function of human immune cells</td>
<td>900</td>
<td>[45]</td>
</tr>
<tr>
<td>Chemotactic Response</td>
<td>Influence on leukocyte chemotactic response</td>
<td>900</td>
<td>[46]</td>
</tr>
<tr>
<td>Membrane Effects</td>
<td>Nonlinear electric properties of membranes, potential for effects on membrane proteins and currents</td>
<td>900</td>
<td>[41]</td>
</tr>
<tr>
<td>Specific Absorption Rate (SAR)</td>
<td>Measure of RF energy absorbed by tissues, potential guideline for safe exposure levels</td>
<td>900</td>
<td>[47]</td>
</tr>
</tbody>
</table>

Table 2: A Comprehensive Overview of the Deleterious Effects of EMR Along with the Associated Power Density Levels

<table>
<thead>
<tr>
<th>Biological Effects</th>
<th>Power Density Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired nervous system activity</td>
<td>5-10 µW/cm²</td>
<td>[48]</td>
</tr>
<tr>
<td>Changes in the hippocampus of the brain</td>
<td>10-25 µW/cm²</td>
<td>[49]</td>
</tr>
<tr>
<td>Immune system effects - elevation of PFC count (antibody producing cells)</td>
<td>30 µW/cm² (0.015 W/Kg SAR)</td>
<td>[50]</td>
</tr>
<tr>
<td>A 26% drop in insulin</td>
<td>100 µW/cm²</td>
<td>[51]</td>
</tr>
<tr>
<td>EEG brain waves are altered when exposed to cell phone signal</td>
<td>0.1 µW/cm² (0.001 W/Kg SAR)</td>
<td>[52]</td>
</tr>
<tr>
<td>Motor function, memory, and attention of school children affected (Latvia)</td>
<td>0.16 µW/cm²</td>
<td>[53]</td>
</tr>
<tr>
<td>Interference with medical devices at least up to 1000 MHz</td>
<td>2.4 µW/cm²</td>
<td>[53]</td>
</tr>
<tr>
<td>Irreversible infertility in mice after 5 generations of exposure to cell phone signals from antenna park</td>
<td>0.168-1.053 µW/cm²</td>
<td>[54]</td>
</tr>
<tr>
<td>Two-fold increase in leukemia in adults from AM RF exposure</td>
<td>1.3-5.7 µW/cm²</td>
<td>[55]</td>
</tr>
</tbody>
</table>

provides scholarly citations supporting the documented biological effects and their corresponding power density levels, bolstering the table’s credibility and offering readers access to further in-depth research on the subject.

Overall, Table 2 serves as a comprehensive resource, facilitating a nuanced understanding of the intricate relationship between electromagnetic radiation and its impact on human health. By delineating the diverse biological effects and their corresponding power density levels, the table aids in elucidating the potential health risks associated with varying levels of EMR exposure. Through its structured presentation and supported references, Table 2 contributes to a holistic comprehension of the deleterious effects of electromagnetic radiation, guiding future research and informing strategies for mitigating associated health risks.
Table 3: Deleterious Effects of Electromagnetic Radiation (EMR) According to the Reported Mechanisms of Cellular and Biochemical Damage, Along with the Density of Power

<table>
<thead>
<tr>
<th>Mechanism Damage</th>
<th>Deleterious Effect</th>
<th>Density Power</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Development</td>
<td>Accelerated development of skin cancer in mice</td>
<td>Not specified</td>
<td>[56]</td>
</tr>
<tr>
<td>Brain Tumor Formation</td>
<td>Increased risk of brain tumors</td>
<td>Not specified</td>
<td>[57]</td>
</tr>
<tr>
<td>DNA Damage</td>
<td>Single and double strand DNA breaks in rat brain cells after RF exposure</td>
<td>Not specified</td>
<td>[58]</td>
</tr>
<tr>
<td>Blood-Brain Barrier Disruption</td>
<td>Permeability of the blood-brain barrier induced by EMR</td>
<td>Not specified</td>
<td>[59]</td>
</tr>
<tr>
<td>Cellular Stress Response</td>
<td>Production of heat shock proteins</td>
<td>1800</td>
<td>[60]</td>
</tr>
<tr>
<td>Non-Thermal Effects</td>
<td>Alterations in brain activity, EEG, melatonin, blood-brain barrier, etc.</td>
<td>Low intensity</td>
<td>[61]</td>
</tr>
<tr>
<td>Mechanical Effects on Cells</td>
<td>Alteration of molecules, ions, and cell function without significant heat</td>
<td>Not specified</td>
<td>[62]</td>
</tr>
<tr>
<td>Specific Health Effects</td>
<td>Various health effects including brain cancer, neurological changes, CNS symptoms, etc.</td>
<td>Low level</td>
<td>[63]</td>
</tr>
<tr>
<td>Genetic Damage</td>
<td>Indirect DNA damage through repair system malfunction</td>
<td>Not specified</td>
<td>[64]</td>
</tr>
<tr>
<td>Cellular Function Disruption</td>
<td>Prevention of cell death, disruption of normal cell regulation</td>
<td>Not specified</td>
<td>[65]</td>
</tr>
</tbody>
</table>

Table 3 presents a detailed analysis of the deleterious effects of electromagnetic radiation (EMR) by exploring reported mechanisms of cellular and biochemical damage alongside their corresponding power density levels. Organized into four columns, the table first outlines various mechanisms through which EMR induces damage at the cellular and biochemical levels, including oxidative stress, DNA damage, and disruptions in cellular signaling pathways. Each mechanism provides insights into specific physiological processes affected by EMR exposure. Subsequently, the table presents the corresponding deleterious effects resulting from these mechanisms, ranging from cellular dysfunction to systemic health impacts, thus highlighting the diverse consequences of EMR exposure on human health.

Furthermore, the table specifies the density of power associated with each reported mechanism of cellular and biochemical damage caused by EMR exposure. This quantitative measure helps in understanding the intensity of EMR exposure corresponding to observed physiological effects. The references column provides scholarly citations supporting the documented mechanisms, deleterious effects, and power density levels, enhancing the credibility of the findings presented. Overall, Table 3 serves as a comprehensive resource, offering insights into the complex interplay between EMR exposure, cellular and biochemical damage mechanisms, and power density levels, ultimately contributing to a better understanding of the potential health risks associated with varying levels of EMR exposure.

CONCLUSION

The comprehensive review on the impact of electromagnetic radiation (EMR) on human health illuminates various dimensions, including behavioral, immunological, epidemiological, and health aspects. It emphasizes the intricate relationship between EMR exposure and health outcomes, shedding light on potential underlying mechanisms. The study stresses the importance of developing stringent safety guidelines based on rigorous scientific evidence, covering dimensions such as behavioral, immunological, and epidemiological factors. Furthermore, the conclusion underscores the need for regulatory measures to mitigate potential adverse effects and protect public health, particularly in regions with weak regulatory frameworks.

Public awareness campaigns are emphasized to empower individuals with accurate information and alleviate concerns surrounding EMR exposure. Infrastructure planning is highlighted as crucial for minimizing exposure levels while addressing psychological aspects is deemed essential for
managing the concerns of individuals claiming Electromagnetic Hypersensitivity (EHS). Additionally, efforts to ensure equitable access to wireless technologies while mitigating health risks are recommended, particularly focusing on vulnerable populations. By adhering to these recommendations, stakeholders can effectively mitigate risks and promote public well-being in the deployment of wireless communication technologies, ensuring a balance between technological advancements and health protection.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCE

10. Mariscotti A. Assessment of human exposure (including interference to implantable devices) to low-frequency electromagnetic field in modern microgrids, power systems and electric transports. Energies, 14(20), 2021: 6789.


27. Johansson, O. Disturbance of the immune system by electromagnetic fields—A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiology, 16(2-3), 2009:157-177.


42. Liu L, Huang B, Lu, Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience. 2024:01-23


52. Masoumi A, Karbalaei N, Mortazavi, SMJ, Shabani M. Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets. International Journal of Radiation Biology, 94(9), 2018: 850-857.